›› 2015, Vol. 21 ›› Issue (1): 12-17.DOI: 10.3969/j.issn.1006-8082.2015.01.003
Previous Articles Next Articles
Online:
2015-01-20
Published:
2015-01-20
通讯作者:
金千瑜
基金资助:
国家自然科学基金项目(30900880, 31270035);浙江省自然科学基金项目(LY13C130006);浙江省公益项目(2010C32G3010019);浙江省水稻种业科技创新团队项目(2012R10024-17)
CLC Number:
HU Zhi-Hua, ZHU Lian-Feng, LIN Yu-Jiong, HU Ji-Jie, ZHANG Jun-Hua, JIN Qian-Yu-*. Research on Rice Nitrogen Metabolism Response to Oxygen Content in Rhizosphere[J]. , 2015, 21(1): 12-17.
胡志华, 朱练峰, 林育炯, 胡继杰, 张均华, 金千瑜*. 水稻氮代谢对根际氧气供应的响应研究[J]. 中国稻米, 2015, 21(1): 12-17.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2015.01.003
[1] 陈永华,严钦泉,肖国樱. 水稻耐淹涝的研究进展[J].中国农学通报,2006,21(12):151-153.[2] 梅少华,梅金先,陈兴国,等. 洪涝灾害对水稻生产的影响评估及抗灾对策研究[J].作物杂志,2011 (2):89-93.[3] Wiengweera A, Greenway H, Thomson C J. The use of agar nutrient solution to simulate lack of convection in waterlogged soils[J]. Ann Bot, 1997, 80(2): 115-123.[4] Zeiger L T E. Plant Physiology[M]. Fourth Editon. 北京: 科学出版社, 2009.[5] 吴良欢,祝增荣,梁永超,等. 水稻覆膜旱作节水节肥高产栽培技术[J]. 浙江农业大学学报,1999,25(1):41-42.[6] Armstrong W.Aeration in higher plants[J]. Advances in Botanical research, 1979,7: 225-332.[7] Gibbs J, Greenway H.Review: mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism[J]. Funct Plant Biol, 2003, 30(3): 353-353.[8] Erdmann B, Wiedenroth E. Changes in the root system of wheat seedlings following root anaerobiosis: III. Oxygen concentration in the roots[J]. Ann Bot, 1988, 62(3): 277-286.[9] Good A G, Paetkau D H. Identification and characterization of a hypoxically induced maize lactate dehydrogenase gene[J]. Plant mol biol, 1992, 19(4): 693-697.[10] Ponnamperuma F. The chemistry of submerged soils[M]. NY and London: Academic Press, 1972.[11] 李玉昌,李阳生,李绍清. 淹涝胁迫对水稻生长发育危害与耐淹性机理研究的进展[J]. 中国水稻科学,1998,12(S1):70-76.[12] G S M.Agriculture Encyclopedia: Root Formation[M]. Japan: Yangxian Hall, 1987.[13] 朱练峰. 根际氧供应对水稻根系生长的影响及其与产量形成的关系[D]. 北京:中国农业科学院,2013.[14] 刘法谋. 根际氧水平对不同类型水稻形态与生理特性的影响[D]. 北京:中国农业科学院,2011.[15] 王丹英,韩勃,章秀福,等. 水稻根际含氧量对根系生长的影响[J]. 作物学报,2008,34(5):803-808.[16] 徐春梅,王丹英,陈松,等. 增氧对水稻根系生长与氮代谢的影响[J]. 中国水稻科学,2012,26(3):320-324.[17] Almeida A, Vriezen W, Van Der Straeten D.Molecular and physiological mechanisms of flooding avoidance and tolerance in rice[J]. Russ J Plant Physiol, 2003, 50(6): 743-751.[18] 朱练峰,刘学,禹盛苗,等. 增氧灌溉对水稻生理特性和后期衰老的影响[J]. 中国水稻科学,2010,24(3):257-263.[19] 赵锋,徐春梅,张卫建,等. 根际溶氧量与氮素形态对水稻根系特征及氮素积累的影响[J]. 中国水稻科学,2011,25(2):195-200.[20] 赵锋,张卫建,章秀福,等. 连续增氧对不同基因型水稻分蘖期生长和氮代谢酶活性的影响[J]. 作物学报,2012,38(2):344-351.[21] 张亚丽,董园园,沈其荣,等. 不同水稻品种对铵态氮和硝态氮吸收特性的研究[J].土壤学报,2005,41(6):918-923.[22] 汪晓丽,司江英,陈冬梅,等. 低 pH 条件下不同氮源对水稻根通气组织形成的影响[J]. 扬州大学学报:农业与生命科学版,2005,26(2):66-70.[23] Oliveira H C, Sodek L. Effect of oxygen deficiency on nitrogen assimilation and amino acid metabolism of soybean root segments[J]. Amino acids, 2013, 44(2): 743-755.[24] Oliveira H C, Freschi L, Sodek L. Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency[J]. Plant Physiol Biochem, 2013, 66: 141-149.[25] Morard P, Silvestre J, Lacoste L, et al. Nitrate uptake and nitrite release by tomato roots in response to anoxia[J]. J plant physiol, 2004, 161(7): 855-865.[26] Kronzucker H J, Kirk G J, Siddiqi M Y, et al. Effects of hypoxia on 13NH4+ fluxes in rice roots kinetics and compartmental analysis[J]. Plant Physiology, 1998, 116(2): 581-587.[27] Suenaga A, Moriya K, Sonoda Y, et al. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants[J]. Plant and Cell Physiology, 2003, 44(2): 206-211.[28] Sonoda Y, Ikeda A, Saiki S, et al. Distinct expression and function of three ammonium transporter genes (OsAMT1; 1–1; 3) in rice[J]. Plant Cell Physiol, 2003, 44(7): 726-734.[29] Crawford N M, Forde B G. Molecular and developmental biology of inorganic nitrogen nutrition[J]. The Arabidopsis book/American Society of Plant Biologists, 2002.[30] Liu K H, Tsay Y F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation[J]. EMBO j, 2003, 22(5): 1005-1013.[31] Wang X, Wu P, Hu B, et al. Effects of nitrate on the growth of lateral root and nitrogen absorption in rice[J]. Acta Botanica Sinica, 2001, 44(6): 678-683.[32] Kirk G J. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil[J]. New Phytol, 2003, 159(1): 185-194.[33] Stoimenova M, Igamberdiev A U, Gupta K J, et al. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria[J]. Planta, 2007, 226(2): 465-474.[34] Kronzucker H J, Siddiqi M Y, Glass A D, et al. Nitrate-ammonium synergism in rice. A subcellular flux analysis[J]. Plant Physiol, 1999, 119(3): 1041-1046.[35] 赵霞,徐春梅,王丹英,等. 持续低氧环境下铵硝混合营养对水稻苗期生长及氮素代谢的影响[J]. 中国稻米,2013,19(5):13-17.[36] Little D Y, Rao H, Oliva S, et al. The putative high-affinity nitrate transporter NRT2. 1 represses lateral root initiation in response to nutritional cues[J]. Proc Natl Acad Sci U S A, 2005, 102(38): 13693-13698.[37] Segonzac C, Boyer J C, Ipotesi E, et al. Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter[J]. The Plant Cell Online, 2007, 19(11): 3760-3777.[38] 武维华. 植物生理学[M]. 2版. 北京:科学出版社,2008.[39] Warner R L, Kleinhofs A. Genetics and molecular biology of nitrate metabolism in higher plants[J]. Physiol Plant, 1992, 85(2): 245-252.[40] Sivasankar S, Oaks A. Nitrate assimilation in higher plants: the effect of metabolites and light[J]. Plant Physiol Biochem, 1996, 34(5): 609-620.[41] Kaiser W, Weiner H, Huber S. Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity[J]. Physiol Plant, 1999, 105(2): 384-389.[42] Licausi F. Regulation of the molecular response to oxygen limitations in plants[J]. New Phytol, 2011, 190(3): 550-555.[43] Thomas A L, Sodek L. Development of the nodulated soybean plant after flooding of the root system with different sources of nitrogen[J]. Braz J Plant Physiol, 2005, 17(3): 291-297.[44] Horchani F, Aschi-Smiti S, Brouquisse R. Involvement of nitrate reduction in the tolerance of tomato (Solanum lycopersicum L.) plants to prolonged root hypoxia[J]. Acta physiol plant, 2010, 32(6): 1113-1123.[45] Botrel A, Kaiser W M. Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status[J]. Planta, 1997, 201(4): 496-501.[46] Cock J M, Brock I W, Watson A T, et al. Regulation of glutamine synthetase genes in leaves of Phaseolus vulgaris[J]. Plant mol biol, 1991, 17(4): 761-771.[47] Shi K, Ding X T, Dong D K, et al. Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus: a role for increased nitrate reduction[J]. Funct Plant Biol, 2008, 35(4): 337-345.[48] Lam H M, Coschigano K, Oliveira I, et al. The molecular-genetics of nitrogen assimilation into amino acids in higher plants[J]. Annu rev plant biol, 1996, 47(1): 569-593.[49] 蒋明义,郭绍川. 氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用[J]. 植物生理学报,1997,23(4):347-352.[50] Shingaki-Wells R N, Huang S, Taylor N L, et al. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance[J]. Plant Physiol, 2011, 156(4): 1706-1724.[51] Reggiani R, Bertani A. Anaerobic amino acid metabolism[J]. Russ J Plant Physiol, 2003, 50(6): 733-736.[52] Mustropha A, Zanettia M E, Janga C J, et al. Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis[J]. PNAs, 2009, 106(44): 18843-18848.[53] Hunt P, Klok E, Trevaskis B, et al. Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana[J]. Proc Natl Acad Sci, 2002, 99(26): 17197-17202.[54] Yang C Y, Hsu F C, Li J P, et al. The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis[J]. Plant Physiol, 2011, 156(1): 202-212.[55] Cousins A B, Pracharoenwattana I, Zhou W, et al. Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release[J]. Plant Physiol, 2008, 148(2): 786-795.[56] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture[J]. Ann Bot, 2010, 105(7): 1141-1157.[57] 彭少兵,黄见良,钟旭华,等. 提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学,2002,35(9):1095-1103.[58] Zhu Z, Chen D. Nitrogen fertilizer use in China–Contributions to food production, impacts on the environment and best management strategies[J]. Nutr Cycl Agroecosys, 2002, 63(2-3): 117-127.[59] De Datta S. Advances in soil fertility research and nitrogen fertilizer management for lowland rice[J]. Efficiency of nitrogen fertilizers for rice, 1987: 27-41.[60] 蔡贵信,朱兆良,朱宗武,等. 水稻田中碳铵和尿素的氮素损失的研究[J]. 土壤,1985,17(5):225-229.[61] Simpson J, Freney J. Interacting processes in gaseous nitrogen loss from urea applied to flooded rice fields[C]// Interacting processes in gaseous nitrogen loss from urea applied to flooded rice fields.Conference papers, Urea Technology and Utilization International Symposium Malaysian Society of Soil Science, Kuala Lumpur: 281-290.[62] 张树兰,杨学云. 温度、水分及不同氮源对土壤硝化作用的影响[J]. 生态学报,2002,22(12):2147-2153.[63] 倪吾钟,沈仁芳. 不同氧化还原电位条件下稻田土壤中15N 标记硝态氮的反硝作用[J]. 中国环境科学,2000,20(6):519-523.[64] 孙志高,刘景双. 湿地土壤的硝化-反硝化作用及影响因素[J]. 土壤通报,2008,39(6):1462-1467.[65] Reddy K, Patrick J W. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil[J]. Soil Biol Biochem, 1975, 7(2): 87-94.[66] Patrick W H, Wyatt R. Soil nitrogen loss as a result of alternate submergence and drying[J]. Soil Sci Soc Am J, 1964, 28(5): 647-653.[67] Tan X, Shao D, Liu H, et al. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields[J]. Paddy and Water Environment, 2013, 11(1-4): 381-395.[68] 赵霞,徐春梅,王丹英,等. 根际溶氧量在水稻氮素利用中的作用机制研究[J]. 中国水稻科学,2013,27(6):647-652.[69] Trought M, Drew M. Alleviation of injury to young wheat plants in anaerobic solution cultures in relation to the supply of nitrate and other inorganic nutrients[J]. J Exp Bot, 1981, 32(3): 509-522.[70] Wang X Z, Zhu J G, Gao R, et al. Nitrogen cycling and losses under rice-wheat rotations with coated urea and urea in the Taihu lake region[J]. Pedosphere, 2007, 17(1): 62-69.[71] Li Y, Wang X. Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions[J]. Plant soil, 2013, 365(1-2): 115-126.[72] Sepaskhah A, Barzegar M. Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment[J]. Agricultural Water Management, 2010, 98(1): 38-44.[73] Ye Y, Liang X, Chen Y, et al. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use[J]. Field Crops Research, 2013, 144: 212-224.[74] 刘学,朱练峰,陈琛,等. 超微气泡增氧灌溉对水稻生育特性及产量的影响[J]. 灌溉排水学报,2009,28(5):89-91.[75] Baker A M, Hatton W. Calcium peroxide as a seed coating material for padi rice[J]. Plant soil, 1987, 99(2-3): 379-386. |
[1] | WANG Yan, WANG Wang, CAI Jiaxin, ZENG Xin, NI Xinhua, TIAN Jie, TANG Chuang, JING Xiu, ZHOU Miao, WANG Jing, XU Hao, HU Yajie, XING Zhipeng, GUO Baowei, XU Ke, ZHANG Hongcheng. Research Progress on Effects of Nitrogen Fertilizer on Structure and Physicochemical Properties of Rice Starch [J]. China Rice, 2023, 29(4): 1-8. |
[2] | CAO Chunxin, HUANG Hongming, WANG Nuan, LIU Yubing, ZHAO Yongliang, LIU Xinhua. Paddy-upland Rotation Cultivation Technique of “Early Rice - Processing Pepper” [J]. China Rice, 2023, 29(4): 101-103. |
[3] | ZHU Junkai, ZHU Yangang, CAO Jinxia, YANG Dezhen, ZHU Ying, WANG Baohe, ZHANG Yanqiong, YANG Janchun, ZHAO Jun, LIU Xiaobin. Breeding and Application of New High-quality Mid-ripening Japonica Glutinous Rice Variety Jinjingnuo 6288 [J]. China Rice, 2023, 29(4): 104-105. |
[4] | HU Jiangbo, REN Zhengpeng, DING Xiang, WANG Chaoquan, FENG Yang, WANG Xiaojian, ZHANG Xiang, XU Nanfei. Application of Herbicides in Rice Fields and Research Progress on Herbicide-resistant Rice Varieties Breeding [J]. China Rice, 2023, 29(4): 13-19. |
[5] | WANG Yunxiang, XIAN Yunyu, ZHAO Can, WANG Weiling, HUO Zhongyang. Research Progress and Prospect of Slow and Controlled Release Fertilizer Application Technology in Rice [J]. China Rice, 2023, 29(4): 20-26. |
[6] | LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food [J]. China Rice, 2023, 29(4): 38-44. |
[7] | XUE Lian, DUAN Shengxing, ZHENG Xingfei, YIN Desuo, DONG Hualin, HU Jianlin, WANG Hongbo, ZHA Zhongping, GUO Ying, CAO Peng, XU Deze. Current Situation and Countermeasures of Rice Production in Hubei Province [J]. China Rice, 2023, 29(4): 45-47. |
[8] | WANG Xin, LIU Wei, MA Hongwen, HE Qi, FENG Weidong, ZHANG Yimin, LI Hong, YIN Yanbo. The Course, Problems and Prospects of High-quality Rice Breeding in Ningxia [J]. China Rice, 2023, 29(4): 48-52. |
[9] | SUN Zhiguang, LIU Yan, LI Jingfang, ZHOU Zhenling, XING Yungao, XU Bo, ZHOU Qun, WANG Derong, LU Baiguan, FANG Zhaowei, WANG Baoxiang, XU Dayong. Identification and Evaluation Method for Germinability under Submerged Condition in Rice and Germplasm Screening [J]. China Rice, 2023, 29(4): 53-58. |
[10] | WANG Xingwei, WANG Zhicheng. Effects of Nitrogen Fertilizer Deep Placement Coupled with Straw Incorporation on Leaf Physiological Characteristics, Nitrogen Utilization, and Yield of Rice [J]. China Rice, 2023, 29(4): 59-65. |
[11] | HE Bing, LI Chao, YAN Yongfeng, LIU Yueyue, HE Jingqi, YU Tianhua, WANG Shuai, CHEN Dianyuan, YAN Guangbin. Effects of Rice Straw Returned to the Fields by Water Harrow in Autumn on Soil and Rice Characters [J]. China Rice, 2023, 29(4): 66-71. |
[12] | WEI Liangliang, LIU Shuodan, LI Min, WANG Ying, LI Yanduo, ZHAO Hongbo, Wang Nan. Passivated Effect of Modified Rice Straw Biochar on Cd2+ in Paddy Soil and Rice Plant [J]. China Rice, 2023, 29(4): 72-77. |
[13] | YANG Lifan, TIAN Qinglin, GONG Yurui, LI Zhenyuan, LI Qingmao, LI Qinyan, HUANG Liyu, HU Fengyi, QIN Shiwen. Screening and Identification of Endophytic Bacteria from Oryza minuta and Their Plant Growth-promoting Activities [J]. China Rice, 2023, 29(4): 78-83. |
[14] | DONG Wei, ZHANG Jianping, DENG Wei, XU Yuran, KUI Limei, TU Jian, ZHANG Jianhua, AN Hua, WANG Rui, GU Anyu, ZHANG Jinwen, LU Ying, YANG Liping, GUAN Junjiao, CHEN Yikun, LI Xiaolin. Analysis on Basic Characteristics of Rice Varieties Approved in Yunnan Province from 1983 to 2021 [J]. China Rice, 2023, 29(4): 84-89. |
[15] | LIU Wei, LI Shengnan, SONG Mengqiu, RUAN Shuang, HE Shuihua, XUE Wenxia, LI Hongbin, ZHANG Zhenyu. Current Situation and Development Strategy of Japonica Rice Breeding in China [J]. China Rice, 2023, 29(4): 9-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||